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Abstract—A type of extreme disastrous floods are associated
with a sequence of prior heavy precipitation events occurring
frequently from over several days to several weeks. Transitional
methods for precipitation clusters prediction usually rely on the
measurement and analyses of meteorological variables. However
while a short-term prediction of certain location depends only on
variables in near spatial and temporal neighborhood, predictions
with long lead time must consider variables in a long time window
and large spatial neighborhoods, this means an enormous amount
of potentially influencing variables and only a subset of them
strongly relate to prediction. Processing a deluge of variables and
discovering strongly relevant features pose a significant challenge
for big data analytics.

Finding influencing variables calls for automated methods of
strongly relevant feature selection, which is what online streaming
feature selection provides. In particular, online streaming feature
selection, which deals with the stream of features sequentially
added while the total data observations are fixed, aims to
select a subset of strongly relevant features from the original
feature set. In this paper, we apply four state-of-the-art online
streaming feature selection methods for building long-lead ex-
treme floods forecasting models, which identify optimal size of
strongly relevant meteorological variables and confine learning
the prediction model on the relevant feature set instead of the
original entire feature set. The prediction models are evaluated
and compared systematically on the historical precipitation and
associated meteorological data collected in the State of Iowa.

Index Terms—Online Streaming Feature Selection, Online
Group Feature Selection, Precipitation Prediction.

I. INTRODUCTION

Extreme floods are the one of the most destructive hazards
on Earth. Despite local efforts and national encouragement
to mitigate flood hazards and regulate development in flood-
prone areas, flood damages have increased in the United
States in the past decades. Through analysing the figures
from observation networks (rain gauges) and radar, National
Weather Service (NWS) can provide a medium term (1-5
days ahead) flood warning currently1. However, long-lead (5-
15 days ahead) prediction of extreme floods[7], which is
great important to society for providing support of emergency

†Corresponding author.
1http://water.weather.gov/ahps/

response, still has relative low accuracy [8]. For instance,
during the Colorado flooding in 2013, Because the amount of
moisture in the atmosphere over Denver was at a record high
for any September day on the morning of the 11th, computer
models were not consistent on the exact location of the heavy
rain [15].

Because a type of extreme floods are associated with a
sequence of prior heavy precipitation events occurring fre-
quently from over several days to several weeks and one of
the most common and well studied approach for real-world
predictive problems is classification. So long-lead forecasting
of extreme floods can be formulated as a classification problem
by identifying the precursors to heavy precipitation event
clusters. Nevertheless, with the prediction lead time increasing,
the potentially influencing meteorological variables in longer
time window and larger spatial neighborhoods should be
considered. For long-lead heavy precipitation prediction, this
means an enormous amount of potentially influencing vari-
ables and only a subset of them strongly relate to prediction.
How to deal with enormous variables and discovering strongly
relevant ones are major challenges for big data analytics.

Finding strongly relevant features is what feature selection
provides. Specially, Feature Selection aims to select a subset of
relevant features from the original feature set for constructing
forecasting model, in order to achieve simplification of models
for easier interpretation, time efficiency, and enhanced gener-
alization by reducing over-fitting. Traditionally online feature
selection deals with the data observations sequentially added
while the total dimensionality is fixed. In recent years, online
streaming feature selection [1] has been attracted much atten-
tion. In contrary, it deals with sequentially added dimensions
in feature space while the number of data instances is fixed.
Many big data applications call for online streaming feature
selection to consume sequentially added dimensions over time,
especially extremely high feature space in big data analytics.
For instance, Di et al. used OSFS for the heavy precipitation
prediction [12]; Wang et al. implemented fast-OSFS algorithm
for the flood forecasting[16]. However, there is no existing
studies that apply different online streaming feature selection
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Fig. 1: The flow chart of online streaming feature selection.

methods on meteorological data and systematically study their
performance on long-lead extreme precipitation forecasting. In
this paper, we use four state-of-the-art online streaming feature
selection methods, which have been successfully applied in
computer forecast models, for the long-lead extreme flood
prediction problem and compare the results systematically. Our
contributions are:
• We formulate flood forecasting as a machine learning

problem and construct a feature space which consists of
potential relevant spatial and temporal meteorological features.
• We apply four state-of-the-art online streaming feature

selection methods: alpha-investing, OSFS, SAOLA, and Group
SAOLA, on the meteorological data to discover strongly
relevant feature set respectively.
• Using four different relevant feature sets to build our long-

lead extreme floods forecasting models, we systematically
study historical precipitation and associated flood data in the
State of Iowa. Based on the experiment results, the Group
SAOLA algorithm is the most efficient in long-lead extreme
floods forecasting problem.

II. METHOD

Online streaming feature selection (Figure II) is usually
divided into two main types. one is processing one feature
at a time. Its goal is to online select strongly relevant features
U from offered features F for class C by operating one
feature at a time as well as in cases in which offered features
of F arrive sequentially in a stream. Here we are given
a set of labeled inputs D = {F,C} which is called the
training set. And in general, F is a set of N sequential
features (F = {f1, ..., fi, ...fN}), such as the temperature
and precipitation of different locations and days, fi is the ith

feature in F . U is a strongly relevant subset of F , and the form
of the class label C is usually a set of categorical variables
from some finite set (e.g.,C = {c|c ∈ {0, 1}}), such as heavy
precipitation and non-heavy precipitation. We donate Ui as the
currently selected feature set after processing the feature fi,
K as any subset of selected feature set (K ⊆ {Ui−1 ∪ fi}),
P (C|K) as the conditional probability distribution over class

labels (given K), and U ′ as candidate of current selected
feature set. Then the approach of online streaming feature
selection on streaming features added individually can be
formulated as follows:

Ui = argmin
U ′
{|U ′| : U ′ = argmax

K⊆{Ui−1∪fi}
P (C|K)} (1)

This corresponds to find the optimal set of relevant features Ui

for class C. Especially, when operating a new coming feature
(fi), the currently selected feature set Ui will be updated
dynamically. In this paper, we use Alpha-investing [2], OSFS
[3][4], and SAOLA [5] to solve this problem.

The second main type of online streaming feature selec-
tion is processing grouped features sequentially. Here we
are given features F with prior group information (F =
{G1, ...Gj , ...GM}), and the goal is to find the optimal set
of relevant feature groups UG from offered features F , where
M refers to the number of groups, Gj refers to the ith group
features (Gj = {fp, ...fq}, 1 < p < q < N ), such as
the temperature and precipitation of one-location-one-day, and
UG refers to the a strongly relevant subset of F with group
information (UG = {Ux|1 ≤ x ≤ M,Ux ⊆ Gx}). We will
denote the current selected feature groups after processing Gj

by UGj . So the online selection of dynamic groups can be
formulated as follows:

UGi = argmax
G′⊆{UGi−1

∪Gi}
P (C|G′)

s.t.

(a) ∀fi ∈ Uj , Uj ⊂ UGi
,

P (C|{Uj − {fi}, fi}) 6= P (C|{Uj − {fi}})
(b) ∀Uj ⊂ UGi

,

P (C|{UGi
− Uj , Uj}) 6= P (C|{UGi

− Uj}).

(2)

Here the objective corresponds to find the optimal set of
feature groups UGi

for class C, Eq.(2 a) aims to find the
minimal number relevant features in each group, and Eq.(2 b)
aims to remove redundant features in currently selected set. In
the paper, Eq.(2) can be solved by Group SAOLA [6].

A. Alpha-investing

Alpha-investing method [2], which was proposed by Zhou
et al. in 2006, is one of the well-known online streaming
feature selection method. The idea is to dynamically update the
relevant feature set by adding a new feature as addition into the
current selected feature set if the new feature is correlated with
the class feature. It use a dynamically threshold for adding a
new feature, which is adjusted on the error reduction, against
over-fitting. As a simple toy example of Alpha-investing,
consider the process illustrated in Figure 2(A). We have
nine streaming features as input and two outputs (selected
features and irrelevant features). When analyzing the new
coming feature (Feature 6), we will use linear regression and
error reduction to calculate the correlation between temporary
features, which are selected features (Feature 1, 5) and new
coming feature (Feature 6), and class label (red cross). If
the result greater than the given threshold, Feature 6 will be



Fig. 2: Illustrating examples of the four relevant feature selecting processes that operate on Feature 6 of a set of nine features
arriving one by one using four online streaming feature selection methods. ”Current selected features” is the temporary relevant
features which have been selected currently. ”Current irrelevant features” is the irrelevant features which have been rejected
by the relevant test.

selected, otherwise it will be rejected. Alpha-investing has
been evaluated that it can efficiently work on the problems
with high dimensionality [2]. However, it only calculates
whether the new coming feature should be added into the
current relevant feature set, and ignores removing redundant
features from the selected feature set.

B. OSFS

Another well-known streaming feature selection method is
Online Streaming Feature Selection (OSFS) [3][4], which Wu
et al. proposed in 2010. Its idea is to find the best so far
relevant feature set from the original feature set by two steps:

Step 1. Calculate whether the new coming feature is relevant
to the class feature.

Step 2. Analyze whether there exists redundancy among the
selected feature set currently once the new coming feature is
added.

Such as the illustration in Figure 2(B), firstly, the new
coming feature Feature 6 will be calculated the relevancy to
the class label (red cross). If it related to class label, we will
do conditional dependence test between temporary features
(Feature 1, 5, 6), and class label for redundancy analysis. The
redundant feature will be removed from selected feature set
(Feature 5).

Compared with Alpha-investing, OSFS not only determines
whether the new coming feature should be added into the
current selected feature set, but also calculates if any feature

can be removed from the current selected feature to keep the
size of relevant feature set minimal.

C. SAOLA

Based on the OSFS method, Yu et al. proposed Scalable
and Accurate OnLine Approach (SAOLA) by employing on-
line pairwise comparisons between features in the currently
selected feature set once a new coming feature is included [5].
As the process presented in Figure 2(C), after the dependence
analysis between Feature 6 and class label, we will do pairwise
comparisons in the temporary features (Feature 1, 5, 6) to find
redundant features (Feature 5).

The benefits of SAOLA is when a data set includes ex-
tremely high dimensionality in big data analytics, SAOLA can
significantly mitigates the expensively computational costs.

D. Group SAOLA

Unlike the methods above, Group SAOLA [6], which was
proposed by Yu et al. in 2015, is a type of streaming feature
selection method that particularly works on grouped streaming
features (e.g., features which represent color, texture and
other visual information). Utilizing the prior group information
Group SAOLA can maximize each group’s predictive perfor-
mance for classification. Figure 2(D) gives the detail of this
idea. Here the 9 input features are generated in 3 groups. For
operating Feature 6, we firstly do dependence analysis on it,
then we use pairwise comparisons on the selected features
(Feature 5, 6) in the group which includes Feature 6 to make



sure that we get the minimal relevant features of this group.
Finally, we do pairwise comparisons between each selected
groups for removing redundant features in selected feature
set. For the effort of internal group pairwise comparisons and
interactive group pairwise comparisons, Group SAOLA can
greatly consume sequentially added features on problems with
over a million potential features.

III. EXPERIMENTS

We apply alpha-investing, OSFS, SAOLA, and Group
SAOLA on the historical meteorological data of Iowa for the
long-lead extreme floods forecasting and evaluate the efficacy
and accuracy systematically. This will be implemented as
follows (Figure 3):
• Construct a feature set which consists of potential relevant

spatial and temporal meteorological features.
• Define a binary class label for the extreme precipitation

event depending on the precipitation information.
• Re-sample the potential relevant feature set to deal with

class imbalance.
• Apply four online streaming feature selection methods to

a select relevant feature sets from millions of spatial and
temporal meteorological features.

• Building predictive models using the selected feature sets
for long-lead extreme floods forecasting.

A. Data Preprocessing

Candidate Meteorological Variables Identification: The
potential relevant features for experiment are meteorological
predictor variables with certain spatial and temporal infor-
mation. We choose several variables from the NCEP-NCAR
Reanalysis dataset [10], which are collected at different pres-
sure surfaces and typically used by meteorologists for making
forecasts, as meteorological predictor variables. Based on the
theory of quasi-geostrophic and baroclinic[14], we specially
choose 300hPa (U300) and 850hPa (U850) zonal winds(i.e.
east-west) because they are a proxy for the location and
strength of the jet stream which require wind shear (strong
change in wind speed with height) to develop. And the
information of the location of the jet stream exhibit persistence
on scales much longer than individual storm events. Moreover,
300hPa (V300) and 850hPa (V850) meridional (i.e. North-
South) winds are chosen because they are extremely important
for the transport of heat and moisture from the tropics into
the mid-latitudes. The geopotential height at 300hPa (Z300),
500hPa (Z500), and 1000hPa (Z1000) are chosen because
the 500hPa field will contain information about Rossby wave
propagation, which is a natural phenomenon in the atmo-
sphere and oceans of planets that largely owe their properties
to rotation, and the comparison with 300hPa and 500hPa
fields allows us to infer where large-scale rising motion (and
therefore precipitation) is likely to take place. On the other
hand, the precipitation (PW) and 850hPa temperature (T850)
fields are chosen because the moisture transport is needed to
maintain the precipitation while the advection of temperature
is crucial for strengthening (weakening) temperature gradients

and the production (destruction) of fronts, which are important
in producing vertical (i.e. rising) motion.

Potential Relevant Feature Space Construction: In order
to build a feature space with the spatial and temporal informa-
tion of the meteorological variables. We selected 9 variables
from the NCEP-NCAR Reanalysis dataset [10] on constant
pressure surfaces, which are typically used by meteorologists
for making forecasts, as meteorological variables. Table I
presents the information of the meteorological variables. Then
we build the potential relevant feature space as following steps:

Step 1. Choose 5,328 locations, which are uniformly dis-
tributed between the equator and the North pole (37 latitudes
and 144 longitudes).

Step 2. Sample every meteorological variable from 5,328
locations in the same day as the potential relevant features of
one day.

Step 3. Repeat Step 2 until accumulating the potential
relevant features of 10 continuous days before Class Label
Creation: Here, we are trying to predict an upcoming
time period with the extreme precipitation event. We use
historical spatial average precipitation data (the mean of daily
precipitation totals from 22 stations divided by the standard
deviation) of the State Iowa from the same time period to
create class label.

We define any 14 days periods as extreme precipitation
clusters and label it as a positive sample if the total amount
of precipitations of the 14 days reaches a historical high
level (i.e., above the 95% percentile of the historical records).
Otherwise, we label it as a negative sample. So our goal is
to identify the positive samples in the evaluation set using the
relevant feature set.

Experimental Setup: The dataset we used for experiment
is the historical meteorological data collected in the State of
Iowa, the United States from January 1st, 1948 to December
31st, 2010. It has totally 23,011 samples over 63 years and
each sample has 479,520 features(9 variables ∗ 5,328 locations
∗ 10 days). This is a big data analytics problem, which
fits for online streaming feature selection methods. In our
experiments, we only pick the samples collected during the
rainy season (April to October) every year, which might have
correlation with precipitation events. The samples in (1948-
2000) are used as training set to learn the forecasting model,
and the other 10 years data are used as test set to evaluate the
forecasting model.

Re-sampling: In our experiments, the extreme precipitation
events rarely occurred in a year, so the total number of positive
samples (extreme precipitation events) in the experimental data
set is much less than the number of negative samples. If we
directly use the imbalanced data for training our forecasting
model, most of the negative prediction will be correct, and the
accuracy will be high. However, we are interested in accurate
classification of positive samples. So to deal with this class
imbalance problem, we use the over-sampling [9] method and
the under-sampling[11] method.

Over-sampling: We repeat all the positive samples until
the number of the positive samples is approximately equal to



Fig. 3: The flow chart of our integrated data mining framework. The forecasting model is built through the learning on relevant
feature set. P is the positive samples which means extreme precipitation event, otherwise, N is the negative samples.

the number of the negative samples. Then we combine them
to create a new balanced data set for the following experiment.

Under-sampling: We count the number of positive sam-
ples. Then we randomly choose the same amount of negative
samples from the experimental data set and combine them
together to create a new balanced feature set for the following
experiment.

B. Relevant feature set discovery

We run four online streaming feature selection methods to
discover the strongly relevant feature set. Especially in Group
SAOLA, we assign every 9 meteorological features of one
location one day as one group, then using this prior group
information for relevant feature selection.

Experiment 1: Four online streaming feature selection
methods + original data + KNN [13]. The aim of this exper-
iment is to check the effect of four online streaming feature
selection methods on imbalanced data.

Experiment 2: Four online streaming feature selection
methods + over-sampled data + KNN. It aims to check the
effect of four online streaming feature selection methods on
the data balanced by over-sampling method.

Experiment 3: Four online streaming feature selection
methods + under-sampled data + KNN. This experiment aims
to check the effect of four online streaming feature selection
methods on the data balanced by the under-sampling method.
We do this experiment 10 times with randomly under sampled
balanced data sets. Then we calculate the mean values of the
static measures.

C. Experiments result

Here we use Accuracy and F-measure for evaluation. Partic-
ular, Accuracy ( TP+FP

TP+TN+FP+FN , where TP is true positive,
TN is true negative, FP is false positive, FN is false negative)
refers to the closeness of a predicted class label to a known
class label. And F-measure ( 2∗TP

2∗TP+FP+FN ) conveys the bal-
ance between the exactness and the completeness.

Which experiment got the worst result? Based on the
experiment results in Table I, we can see that without class
balance, all of four methods get high accuracy in Experiment 1
by the large number of correct predictions of negative samples.

Which is the better class balance method for our
experimental dataset, over-sampling or under-sampling?
Compared the result of Experiment 2 with Experiment 3, it

Experiments Metrics
Alpha

OSFS SAOLA
Group

investing SAOLA
The size

of relevant 112 68 15 8
feature set

1
Accuracy 0.8235 0.827 0.8305 0.8435
F-measure 0.1284 0.1128 0.1285 0.1425

2
Accuracy 0.4766 0.4789 0.4797 0.4976
F-measure 0.239 0.2537 0.2594 0.2635

3
Accuracy 0.7028 0.7696 0.712 0.7189
F-measure 0.7466 0.8039 0.7485 0.7589

TABLE I: The result of experiments, The classifier of 1-
knn [13] is used to build the prediction model for both the
validation and evaluation processes.

can be seen that the under-sampling method works better than
the over-sampling method. This is because in our experimental
data, the positive samples are rare and any uncertainty with
prediction errors from the positive class samples will be
amplified in the over-sampling method.

How does the redundancy analysis effect?In the relevant
feature selection process, for the new coming features, alpha
investing only performs online relevance analysis, but OSFS
also performs an online redundancy analysis. OSFS can get a
more accurate relevant feature set. In the result of Experiment
3, although the size of relevant feature set of OSFS is only 68,
which is nearly half of alpha investing’s (112 features), all of
measurements on OSFS are significantly better than the Alpha
investing’s. The effect of redundancy analysis can also be
observed in the Figure 4 Alpha Investing. In our experiments,
the variable of ”T850” in day 1 is the first feature processed
by all the online streaming feature selection methods. Alpha
Investing are affected by this sequence and as a results, we
can see many red crosses (T850 of day 1) occurs at the
prime meridian. On the other hand, OSFS, SAOLA and Group
SAOLA can improve this through the redundancy analysis
process.

Which is the best online streaming feature selection
method for our experiment? With the effort of online
pairwise comparisons, the size of relevant feature set of
SAOLA has sharlply decreased to 15. And using prior group
information helps Group SAOLA get only 8 relevant features.



Fig. 4: The relevant feature set (according to the types of variables in the set). The red square in the map is the target area
(Iowa) for flood labeling, and other symbols are the relevant meteorological variables. For example, the orange octagon in the
plot of Group SAOLA means that during period from 2001 to 2010, the variable (300hPa meridional wind) over the Caribbean
Sea has a significant effect on the upcoming extreme precipitation clusters in the state Iowa with a lead time of 3 days.

However, the static result of them are still good. Moreover, in
Group SAOLA, because we assigned every 9 meteorological
features of one-location-one-day as one group features, though
the pairwise comparisons between groups, only one feature of
one-location-one-day was chosen and the features of the other
days of this location are removed (Figure 4 Group SAOLA).
Also, we are encouraged to note that several relevant features,
such as the 300hPa meridional wind over the Caribbean Sea,
are physically meaningful.

IV. CONCLUSION

In this paper, we apply four state-of-the-art online streaming
feature selection methods for the long-lead extreme floods
prediction problem and compare the results systematically. We
use the historical precipitation and associated meteorological
data collected in the State of Iowa to evaluate our prediction
mode. In the experiments, because extreme precipitation event
rarely occurred in a year, our experimental data is extremely
imbalanced. We use over-sampling and under-sampling to
deal with this problem respectively and get different balanced
data sets, then we use these balanced data for the following
experiment and compare the result. Based on the experiment
result, under-sampling works better in our project. To deal with
dimensionality reduction, we apply Alpha investing, OSFS,
SAOLA, and Group SAOLA to discovery the relevant feature
sets. Through the comparison of the experiment results of these
4 online streaming feature selection methods, we get that using
OSFS can get the most accurate prediction, but SAOLA and
Group SAOLA are more effective.
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